Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 74, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600306

RESUMO

Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas , Histonas/genética , Histonas/metabolismo , Plantas/genética , Metilação de DNA , Estresse Fisiológico/genética
2.
Neurobiol Aging ; 120: 167-176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206691

RESUMO

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease caused by a combination of genetic and environmental risk factors. The serum metabolome refers to a set of small-molecules which are an important determinant of cellular health. We obtained genome-wide association study (GWAS) summary statistics for serum concentrations of 376 metabolites which were population matched with 2 GWAS studies of AD. For each metabolite we performed 2-sample MR (2SMR) using an inverse variance weighted (IVW) estimate for significance testing. After Bonferroni multiple testing correction one metabolite was causally linked to AD in both GWAS: serum urate. This result was supported by robust 2SMR measures and sensitivity analyses. We applied 2SMR to test for a causal relationship between serum urate and other neurodegenerative diseases: Parkinson disease (PD) and Amyotrophic lateral sclerosis (ALS). In ALS but not PD we identified a nominally significant link between serum urate and disease-risk, although in this case increased serum urate was protective. We conclude that serum urate is a modulator of risk for neurodegeneration. Our work has implications for the design of preventative interventions.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Ácido Úrico , Polimorfismo de Nucleotídeo Único , Esclerose Amiotrófica Lateral/genética , Doença de Parkinson/genética , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...